轴承选型时除正确选择轴承类型外,所选轴承是否具有足够的承载能力也是要考虑的关键因素。计算轴承受力得出轴承理论寿命是最常用的衡量轴承承载能力的方法。冶金齿轮箱根据不同的应用,一般都会有轴承最低理论寿命的要求,例如有些齿轮箱要求轴承最低寿命不低于5万h,有些应用要求不低于3万h。通常在计算轴承寿命时,为得到保守轴承寿命,一般轴承旋转速度选用平均工况条件转速来替代最高旋转速度。齿轮箱传动在功率恒定条件下,转速降低会导致扭矩提高,而扭矩提高会导致轴承受力变大。轴承寿命与转速成1∶1反比关系,但与受力成10倍关系,即轴承受力增大一倍,轴承寿命会降低10倍。对于一些重载及转速较低的应用,理论轴承寿命结果通常无法真实反映轴承性能,通常主要考虑轴承额定当量与轴承受力比值是否大于安全系数,更精确的方法是通过分析软件计算轴承滚子的最大接触应力。 轴承公差配合 冶金齿轮箱轴承通常处于重负载、冲击载荷、高转速或低转速等苛刻的运行环境中,正确地选取轴承公差配合不仅利于轴承的安装,同时可确保重载和冲击载荷条件下轴承不会出现跑圈情况。一般来说,轴承旋转部件采用过盈配合,静止不动的部件采用间隙配合。轴承实际过盈配合范围不仅根据轴承大小变化,而且在重载和高转速应用条件下应采用比常规应用条件更大的过盈配合。在选用英制圆锥滚子轴承时,应注意英制轴承与公制轴承自身公差带的差异而相应调整配合轴及轴承座公差尺寸的范围。英制轴承内外圈直径公差范围均为"加公差",与公制轴承正好相反。若轴与轴承座公差范围依然按照公制轴承选取,英制轴承内外圈均会出现过渡配合情况,导致轴承外圈安装困难而内圈易跑圈,影响轴承使用寿命。英制轴承具体公差配合尺寸应参照轴承供应商推荐尺寸。与英制轴承相比,公制大尺寸轴承公差配合选取较为简单,对于重载、轴承内圈旋转外圈静止的应用条件,内径尺寸范围320~500mm的大尺寸调心或圆柱滚子轴承,轴可采用r6公差范围。对于内径尺寸超过500mm的调心或圆柱滚子轴承,轴可采用r7公差范围。调心或圆柱滚子轴承座公差范围均可选用H7或G7。 轴承初始游隙 圆锥滚子轴承初始游隙与球轴承、调心和圆柱滚子轴承定义不同,是指轴向游隙(BEP),其他轴承均为径向游隙(RIC)。轴承的初始游隙决定了轴承安装及运转后的工作游隙。轴承的游隙决定了轴承工作承载区的大小,轴承初始游隙选择太大会导致轴承工作承载区偏小,即承受力的滚子数量较少,导致轴承寿命降低。 圆锥滚子轴承游隙选择太大还可能出现滚子磨损或撞击保持架,导致保持架断裂的情况发生。轴承初始游隙选择太小会导致轴承发热严重,出现轴承抱死和烧毁等情况。 冶金齿轮箱轴承初始游隙应根据轴的过盈配合量及轴承最高旋转速度推算得出。当齿轮箱轴承内圈与轴过盈配合时,轴承内圈外径会膨胀并吃掉部分初始游隙,初始游隙减掉过盈配合损失的游隙即为轴承的安装游隙(MEP)。一般对于内径尺寸不超过400mm的英制双列圆锥滚子轴承,安装后的游隙范围应不大于0.5mm。对于内径超过400mm的大尺寸轴承,安装后的最大游隙范围可放大到0.6mm左右。 冶金齿轮箱轴承初始游隙选择一般不考虑环境温度,而只考虑轴承内外圈差值温度,因为环境温度会导致轴热膨胀,但轴承座环境温度的影响也会导致热膨胀。轴承安装后的游隙(MEP)减掉轴承内外圈差值温升吃掉的游隙,得到最终轴承运行游隙(OPE)。冶金齿轮箱大圆锥滚子轴承出于安全考虑,最终运行游隙一般不允许出现负游隙。公制圆柱与调心滚子轴承初始游隙的选取方法与圆锥滚子轴承类似但更简单,通常对于大尺寸、轴承内圈过盈配合、外圈间隙配合和重载应用条件,轴承初始游隙可采用标准C3游隙范围。 轴承安装尺寸 轴承的安装尺寸主要包括轴肩与轴承座挡肩直径尺寸,以及轴与轴承座最大倒角半径。对于圆锥滚子轴承,安装尺寸还包括保持架安全间隙尺寸。轴肩与轴承座挡肩直径尺寸应严格按照轴承要求选取,适当的尺寸可确保轴承端面有足够的接触面积,该尺寸太大或太小都会影响轴承使用。齿轮轴与轴承座最大倒角半径应小于轴承自身内外圈倒角半径,轴与轴承座倒角半径过大会导致轴承无法安装到位,造成内外圈歪斜,影响轴承的正常使用。总之,在设计冶金齿轮箱时,应重视轴承的安装尺寸,不应随意增加或减少规定尺寸。 冶金齿轮箱苛刻的运行环境对配用的轴承提出了更为严格的要求,采用高性能的轴承并正确使用轴承是确保齿轮箱连续可靠工作的前提条件。本文通过对冶金齿轮箱轴承选型、公差配合、初始游隙及安装尺寸等要点作简单介绍,可供冶金齿轮箱设计人员及设备维护人员参考。